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The problems of dynamical onset of convection, textural transitions and chaotic 
dynamics in a two-dimensional, rectangular Rayleigh-BBnard system have been 
investigated using well-resolved, pseudo-spectral simulations. All boundary con- 
ditions are taken to be no-slip. It is shown that the process of creating the 
temperature gradient in the system, is responsible for roll creation at the side 
boundaries. These rolls either induce new rolls or move into the interior of the cell, 
depending on the rate of heating. Complicated flow patterns and textural transitions 
are observed in both non-chaotic and chaotic flow regimes. Multistability is 
frequently observed. Intermediate-Prandtl-number fluids (e.g. 0.71) have a quasi- 
periodic time dependence up to Rayleigh numbers of order lo6. When the Prandtl 
number is raised to 6.8, one observes aperiodic (chaotic) flows of non-integer 
dimension. In this case roll merging and separation is observed to be an important 
feature of the dynamics. In some cases corner rolls are observed to migrate into the 
interior of the cell and to grow into regular rolls; the large rolls may shrink and 
retreat into corners. The basic flow patterns observed do not change qualitatively 
when the chaotic regime is entered. 

1. Introduction 
I n  recent years, there has been a growing interest in the dynamics of the 

Rayleigh-BBnard system (Chandrasekhar 1961). Improved experimental techniques, 
most notably, laser-Doppler velocimetry (Gollub & Benson 1980) and high-speed 
data collection techniques have revealed a rich spectrum of flow patterns and states. 
Advances in the theory of dynamical systems have led to the prediction of universal 
routes to chaos (see examples in Cvitanovic 1984) which have been observed 
experimentally (cf. Libchaber & Maurer 1980; Giglio, Musazzi & Perini 1981). 
Analytical methods based on the amplitude expansion approach and variational 
principles (e.g. Newell & Whitehead 1969; Segel 1969; Cross et al. 1980; Cross 
1982a; Greenside et al. 1982; Zippelius & Siggia 1982; Cross et al. 1 9 8 3 ~ ;  Cross & 
Newell 1984) have been employed to  investigate parts of the observed phenomena. 
Last, but not least, numerical simulations (e.g. Moore & Weiss 1973; Siggia & 
Zippelius 1981 ; McLaughlin & Orszag 1982; Grotzbach 1982; Grotzbach 1983; Curry 
et al. 1984; Yahata 1984) have been performed in an effort to elucidate the dynamics 
of the Rayleigh-BBnard system. 
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One of the main reasons the Rayleigh-Be‘nard system is of such wide interest is 
that it has a gradual transition to chaos, which can be carefully studied and 
compared to theoretical predictions (at least for low-aspect-ratio systems). Such 
transitions are typical of low-order, dynamical systems. 

The theory of dynamical systems concerns itself mainly with the investigation of 
coupled sets of ordinary, nonlinear, first-order-in-time differential equations 
(Guckenheimer & Holmes 1983). The disadvantage of this method as far as the 
Rayleigh-BBnard system is concerned is an obvious lack of connection to the 
Navier-Stokes equations describing the dynamics of fluids. The advantage of 
dynamical systems is their relative simplicity and the wealth of universal results 
(Cvitanovic 1984) one can obtain through their analysis (or through the analysis of 
recursion relations that represent Poincark sections of the solutions to such 
differential equations). In the cases where typical results of the theory of dynamical 
systems are observed in hydrodynamic systems, there are only a small number of 
relevant modes and the chaotic behaviour would typically be termed ‘weak 
turbulence ’. 

The chief assumption involved in the method of ‘amplitude equations’ (Newel1 & 
Whitehead 1969 ; Segel 1969) is the existence of some slow space and timescales in the 
problem. Such a slow scale is described by a small parameter E measuring the 
closeness to the first instability (e.g. E = (R-R,)/R, in the case of BBnard 
convection). Consequently, the validity of the resulting equations is limited, a t  least 
in principle, to the close vicinity of the first instability. In practice, amplitude 
equations seem to be valid up to E = O(1) in some cases. Claims have also been made 
by Greenside, Coughran & Schryer (1982) that  amplitude equations contain enough 
information to describe many aspects of the chaotic states. 

An interesting approach to  the dynamics of the Rayleigh-BBnard system (and 
other systems) is the use of truncated sets of modes (Lorenz 1963; Curry 1978). In  
this case, spurious chaotic solutions mag be obtained (Curry et al. 1984). This may 
also happen for amplitude equations used beyond their region of validity. One of the 
reasons for the appearance of such spurious chaotic solutions is the neglect of high 
wavenumber modes, where most of the dissipation takes place. 

Since solutions to the Navier-Stokes equations are far richer in structure and flow 
states than any of the above methods seem to predict, there may be no substitute for 
a direct numerical investigation. In most numerical and analytical treatments of the 
Rayleigh-Be‘nard system, convenient boundary conditions have been chosen, e.g. 
periodic and stress-free boundary conditions (Moore & Weiss 1973 ; McLaughlin & 
Orszag 1982; Curry et al. 1984). 

Computing power and numerical methods a t  present available are sufficient for 
performing resolved simulations of a t  least two-dimensional convection with realistic 
boundary conditions. By two-dimensional, we mean the domain has one vertical and 
one horizontal dimension. We believe such simulations are an important means, as 
are similar simulations of other systems, of learning about the detailed dynamics of 
convection and obtaining an intuition about the processes that govern the convective 
dynamics. They also serve to extract detailed quantitative data. The results 
obtained this way should be helpful in any attempt to construct a theory for thermal 
convection. 

The relevance of studies of two-dimensional convection may be questioned since 
systems in nature are basically three-dimensional. Many flows in three-dimensional 
systems have, however, a two-dimensional nature ; parallel rolls are one example. 
Many three-dimensional states result from instabilities of corresponding two- 
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dimensional states (Busse 1978). In  other types of flows one has a similar situation ; 
e.g. the instability of two-dimensional travelling waves in shear flow to three- 
dimensional disturbances (Orszag & Patera 1983). Three-dimensional magneto- 
hydrodynamic convection in a strong magnetic field is essentially equivalent to two- 
dimensional convection (Busse 1978). It is also believed that many large-scale 
processes in the atmosphere are essentially two-dimensional. Thus the investigation 
of model two-dimensional equations provides us with both physical insight into some 
of the flow processes and a testing ground for dynamical system theory and 
numerical methods. However, we know of no experimental system which corresponds 
directly to  the two-dimensional Boussinesq equations far Rayleigh-Be‘nard con- 
vection. 

The structure of the paper is as follows. I n  $2 we present the Boussinesq equations 
and the boundary conditions. We also describe the numerical method. In  $3  we 
present a detailed account of the low-Rayleigh-number results. In  $4 the results for 
intermediate Rayleigh numbers are displayed. In $ 5  we report the results of 
simulations for high Rayleigh numbers. All of the above simulations are for a Prandtl 
number of 0.71. In $6 we present the dynamics of the Rayleigh-Be’nard system for 
a Rayleigh number of 100000, a Prandtl number of 6.8 and an aspect ratio of 2, as 
an example of possible chaotic dynamics. More details of the chaotic dynamics in the 
two-dimensional Rayleigh-Be’nard system are reserved for a future publication. 
Section 7 offers a short summary of the results and relates to future work. 

2. Equations and numerical methods 
I n  $2.1 we formulate the problem of convection in a rectangle whose boundaries 

are assumed to be perfect conductors. In  $2.2 we describe the numerical methods 
used. 

2.1. The Boussinesq equations 

Since many fluids, especially liquids, are only very weakly compressible, one is 
justified in assuming that the density of the fluid is a function of the temperature 
alone. In  the range of temperature differences relevant to the Rayleigh-Be‘nard 
‘problem, such a dependence may be assumed linear. These approximations form the 
essence of the Boussinesq approximation, which is well known to yield a successful 
model for many convection problems (Boussinesq 1903 ; Busse 1978). 

We consider a fluid contained in a rectangle of width L and height D with perfectly 
conducting boundaries. The rectangle is defined as the region 0 < z < D ,  0 < x < L. 
The gravitational field is in the negative z-direction. The aspect ratio, r, is defined 
as LID. 

The Boussinesq equations are : 

av 1 
= V X ~ - - V ( P + ~ 2 ) + ~ g T z ” + v A v ,  (2.1) - 

at P 

v - v  = 0, (2.3) 

where v = (wz, wz) is the velocity field, w = V x v the vorticity field, T the temperature 
field, P the pressure, v the kinematic viscosity, a the coefficient of thermal expansion, 
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K the coefficient of heat conductivity, p the mass density, t the time and g the 
gravitational acceleration. Equation (2.3) expresses the condition of incom- 
pressibility. The boundaries are assumed to be perfect conductors. The temperatures 
of the top and bottom boundaries are given functions of time. The term aT2 in (2.1) 
may be changed by the gradient of a function a t  will, since the difference can be 
absorbed into the 'pressure'. Thus we assume that the temperature of the top 
plate, z = D, 0 G x < L ,  is zero. The temperature of the bottom plate, Tbot(t) ( z  = 0,  
0 < x < L) ,  is assumed to be uniform and time dependent. We define now an 
'instantaneous ' temperature field qnst(t, z )  : 

TnSt is just a linear interpolation of the temperature between the two horizontal 
boundaries. We assume that T = Enst on the sidewalls: 

T = qnst when x = 0,L for 0 G z < D. (2.5) 

Now we define 

T* = T-Znst, S = lim Tbot(t), 8 = T*/6, Oinst = qnst/6. 
t*'x 

Now we rescale the variables in (2.1)-(2.3) as follows : lengths are scaled by D, time 
by D 2 / ~  (thermal diffusion time) and temperature by S. Let Ra = g a D 3 S / v ~  and 
Pr = Y / K  be the Rayleigh and Prandtl numbers respectively. The rescaled velocities 
and vorticity are still called v and o, respectively. The rescaled independent variables 
will be called z, z and t as before. The resulting equations are: 

(2.6) 
av -- - v ~o-Vn+RaPr8z"+PrAv,  
at 

where m contains all 'potential' terms, and 

a8 
at 
- + u 0 V0 = - U. V8,,,, - 81nst + A@, 12.7) 

Q . v  = 0. (2.8) 

The rescaled boundary conditions then are : 

v = 8 = 0  o n x = 0 , 1  ( O Q z G r ) ,  

o n z = O  ( O G z G l ) ,  

o n x = r  ( O G z G l ) ,  

(2.9a) 

(2.9b) 

( 2 . 9 ~ )  

(the last two conditions expressing the perfect conductivity of the sidewalls). The 
actual rescaled temperature at any point is 8 + einst, where 

einst = ( I  - z )  o ~ ~ ~ ~ ( ~  = 0, t ) .  (2.10) 

Finally, in the heating process we choose for simplicity: 

einst(z = 0, t )  = l-exp(-t/i), (2.11) 

where t is a chosen timescale. 
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Upon substituting (2.10) and (2.11) into (2.7), we obtain: 

a6 1 -+ v -  V6 = w,( 1 - exp ( - t/i?) -: exp ( - t / O  + A6. 
at t 

5 

(2.12) 

Equations (2.6), (2.8) and (2.12) are the equations of motion to  be solved, subject to 
the boundary conditions given by (2.9). 

The equations of motion, as described so far, possess right-left symmetry : when 
w,(x,z) is replaced by -v,(T-x,z), w,(z,z) is replaced by wz(T-x,z) and 6(x,z)  is 
replaced by 6 ( r - x ,  z ) ,  the equations remain invariant. Consequently if the system is 
prepared by a heating process which satisfies this symmetry, the resulting flow states 
will be symmetric with respect to reflections about the vertical centre line. The type 
of heating which is suggested in (2.11) possesses this property. Since the states 
obtained by such a heating process may be unstable to infinitesimal or finite 
perturbations that break this symmetry, we have also considered an asymmetric 
perturbation which can give rise to final asymmetric states. The perturbation we use 
is of the form: 

66 = /3 exp { - [ (x - x0)’ + ( z  - Z ~ ) ~ ] / C ) ,  (2.13) 

where C, xo, zo, and are parameters that  fix the width, location, and strength of the 
perturbation respectively. As is shown in the following sections, such a perturbation 
suffices to induce asymmetrical states. 

Another symmetry of interest possessed by the equations of motion (for steady 
states) is an overall rotation by R radians. The corresponding transformation is : 

where the ( )* denotes the transformed fields. We have found that many steady flow 
fields obey this symmetry, even when the left-right symmetry is broken. 

When one combines the left-right symmetry and the ‘7c’ symmetry, one obtains 
a symmetry transformation, the ‘ top-bottom ’ symmetry, which changes the sense 
of rotation of the rolls. This transformation is defined as follows: 

Note that when the rolls are not symmetric with respect to the horizontal centreline 
(which is the case for most Rayleigh numbers) changing the sense of rotation actually 
implies a change in pattern. 

We stress that the left-right symmetry is a symmetry of the full dynamical 
equations of motion whereas the ‘ R ’  rotation and the ‘ topbot tom’ reflection 
symmetry apply only to the steady state. 

2.2. The numerical methods 

In this subsection we describe the numerical methods used to solve the Boussinesq 
equations (2.6)-(2.8). First, we describe the spatial approximation scheme and then 
the time integration scheme. 
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The pseudo-spectral method (Gottlieb & Orszag 1977) is used for spatial 
discretization. The dependent variables, v and 0, are expressed as 

where Tm(s) is the mth degree Chebyshev polynomial defined by Tm(s) = cos [m cos-' 

The pseudo-spectral method is a collocation method based on the representation 
(41. 

(2.16) with collocation points : 

( 2 . 1 7 ~ '  b)  

If the function to be approximated is analytic, the convergence of this pseudo- 
spectral approximation is exponential as M and N increase. The set of collocation 
points (2.17) is clustered near the boundaries where boundary layers are expected. 

Equation (2.16) is an expression for an interpolating polynomial at  the points 
given in (2.17). The terms in the Boussinesq equations are calculated at  each of the 
interpolation points. An accurate expression for a partial derivative can be derived 
from (2.16) and the recursion relation for Chebyshev polynomials. In one dimension 
the exact expression for the derivative has the form : 

( 2 . 1 8 ~ )  
d d "  
-w(z) = - C d(m)Tm(x) = C b(m)Tm(x), 

c(n-l)b(n-1)-b(n+l) = 2n6(n) for n >, 1 ,  (2.18 b)  

where c(0) = 2 and c(n) = 1 for n 2 1. The derivative of the finite series expansion can 
be calculated with a truncated version of (2.18). Fast Fourier transform methods 
provide an efficient way to transform a field of physical variables to the corresponding 
Chebyshev coefficients. 

Using this pseudo-spectral spatial approximation, the Boussinesq equations are 
reduced to a system of first-order, ordinary differential equations in time for the 
velocity and temperature at each collocation point. The time integration of the 
system is accomplished by 'splitting' the equation into parts; the nonlinear terms 
are advanced by an explicit scheme, and the linear terms are advanced by an implicit 
scheme. 

In the explicit step a second-order, Adams-Bashforth scheme is used to advance 
the nonlinear terms : 

a, 

dx dx m-0 m-0 

v* - vn 

At 
= $( v x o + Ra Pr 0f2)n - +( v x o + Ra Pr 02)%-l, ( 2 . 1 9 ~ )  

8* - o n  

At 
-- - -#(v.VO + V .  VB,,,, + dinst)n + &( V .  V8 + v - VBinst + dinsJn-', (2.19b) 

where the superscript n refers to time level n. 
After this essentially inviscid step, the flow field is not incompressible. The 

pressure is then used to enforce incompressibility. A Poisson equation for the 
pressure is obtained by taking the divergence of the momentum equation. Assuming 
that vn is incompressible, the equation for the pressure is: 

An = V. v*/At .  (2.20) 
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The Laplacian in (2.20) can be split into an M x M matrix for the second derivative 
in the x-direction and an independent N x N matrix for the second derivative in the 
z-direction (Haidvogel & Zang 1979). In a preprocessing step, the inverses of these 
matrices are computed using an eigenvalue/vector decomposition. The boundary 
conditions are taken to be a?r/an = 0 at all boundaries, which preserves consistency 
of the dependent variables but results in an O(Ao)  error in the divergence of the 
velocity at the boundary. This error is decreased by the improved pressure boundary 
conditions introduced in $7.1.2 of Orszag, Israeli & Deville (1986). 

The intermediate velocity field is made solenoidal by subtracting the gradient of 
the pressure from the result of ( 2 . 1 9 ~ ) :  

u** - t)* 
At 

= v7T. (2.21) 

The variables are then updated to the (n+ 1)  time level by employing the implicit, 
Crank-Nicholson scheme on the remaining viscous terms : 

p + l -  v** p + l -  e** 
= &A(fP+l+B**), (2,22a, b)  

At 
= ;PTA(U~+'+V**) ,  

At 

with homogeneous boundary conditions. In the preprocessing step the Laplacian is 
decomposed in a way similar to the pressure. 

Approximately 80% of the CPU time for each timestep is spent doing 8 matrix 
multiplications necessary for inversion of the Laplacians. A calculation with a grid 
of 322 points takes about 0.1 s/timestep on a Cray 1 computer. 

3. Low Rayleigh number behaviour: Ra < lo4 
In this section we present results for Rayleigh numbers less than twice the critical 

Rayleigh number, e.g. Ra < 10000 for r = 1. Both the onset of convection and the 
subsequent dynamics are described. 

The Rayleigh-Be'nard instability is triggered by heating the lower horizontal plate 
in a time dependent fashion (see $2.1). For any rate of heating and for all Rayleigh 
numbers (including Ra < Ra,) the heating process creates rolls a t  the boundaries. In 
figure 1 (a, b)  we show an example of slow heating to a subcritical Rayleigh number, 
Ra = 2000. Here t= 1 (cf. (2.11)) and r = 2. The distortion of the temperature field 
due to the heating process and the resulting rolls at the sidewalls are prominent at 
this very early time t = 0.01. Similar sidewall roll development occurs at  all 
subcritical Rayleigh numbers (checked for Rayleigh numbers as low as 10). When the 
system is heated to a final Rayleigh number below the critical one, the rolls 
eventually decay. The physical mechanism responsible for the creation of the rolls is 
obvious: due to the difference in thermal diffusivities between the fluid and the 
sidewalls (the latter are assumed to be perfect conductors), a horizontal component 
of the temperature gradient is created close to the boundaries. As is well known, 
when the temperature gradient has a component which is orthogonal to the 
gravitational field, the fluid is unstable (for any 'size' of this component). The result 
is roll creation. In contrast to the model suggested by Ahlers & Behringer (1978) and 
Ahlers et al. (1981), but consistent with Cross, Hohenberg & Lucke (1983), no noise 
or (uncontrolled) external perturbation of any kind is necessary to trigger the onset 
of the instability. 

Following its creation at  the wall, the roll moves into the interior of the cell. This 
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L , I ' ' " . '  
0 1 2 3 4 

Time 

FIGURE 2. Induction of new rolls by the primary roll. The parameters are : R = 1500, r = 271 and 
Pr = 0.71. Only the left half of the cell is shown ; the right half is a mirror image. Velocity vector 
plots (upper figures) as well as vorticity contour plots are shown for the times: (a) time of 1 ; (b)  time 
of 6. (c) The positions of the various rolls in the cell as a function of time. 

effect is also demonstrated in figure 1. In  figure 1 (c-e) the rolls created at the 
sidewalls have moved into the interior of the box. Here again we note the large 
distortion in the temperature field that was initially created in the heating process. 
At a later time we observe a less distorted field. Note the strong boundary layer at 
the sidewalls as may be seen in the vorticity plot in figure 1 ( e ) .  Firstly, these rolls 
move in a t  an (almost) constant velocity, and then they stop moving. In figure 1 (f) 
we plot the position of the right-most roll, following its creation a t  a time t = 0. 
This position was defined as the position of the extremum of the vorticity in the roll. 



10 I .  Goldhirsch, R.  B .  Pelz and S.  A .  Orszag 

FIGURE 3. (a )  Velocity vector plot for: R = 1650, Pr = 0.71, r = 2n, t = 1 and a time of 0.35. The 
lower figure is the corresponding vorticity contour plot. Only the left half of the cell is shown. 
(6) Same plots as in (a) for f =  0.05. 

Note the slowing down of the roll as it approaches its 'final' position and the 
relatively large time ( t  x 4) it takes to attain this position. 

In cells of large aspect ratios, more rolls are subsequently created in the interior 
of the cell. The existence of these latter cells is induced by the primary rolls which 
are created a t  the sidewalls. Figure 2 (a ,  b )  demonstrates this phenomenon for a cell 
aspect ratio of 271 and Ra = 1500 (only half a cell is shown, the other half being a 
mirror image of the first). Figure 2 ( a )  shows the creation of the roll (t= 1); the 
corresponding vorticity plot reveals the existence of a single roll. A secondary roll is 
induced by the parent roll a t  a later time. In  figure 2 (b )  one observes three rolls. We 
reiterate that all of this is happening below the critical Rayleigh number. In figure 
2 ( c )  we present the time-dependent positions of these rolls from the moment of their 
creation. 

When the Rayleigh number is subcritical, the convective structure eventually 
decays at an asymptotic rate that corresponds to the one predicted by the linearized 
Boussinesq equations. Above the critical Rayleigh number the rolls stabilize to 
create a steady convective state. For example, a t  a Rayleigh number a t  7000 and 
aspect ratio of 2, 'square-like' patterns of two convecting rolls are developed (in 
order to 'fit' in the container). Such rolls were predicted by Busse & Frick (1985) for 
the case of temperature-dependent viscosity. 

The rate of initial heating of the bottom plate is important in determining the 
dynamics of the onset. In figure 3(a)  we show the velocity and vortieity fields at a 
time of 0.35 for a box with an aspect ratio of 2~ (only the left half of the box is shown) 
a t  a Rayleigh number of 1650 and f =  1 (cf. (2.11)). No induced roll is visible. The 
maximal value of the velocity field is approximately 0.7 in dimensionless units. On 
the other hand, when t = 0.05, we observe a secondary roll and the maximal velocity 
is about 2.4 (see figure 3 b ) .  When the heating is fast, the primary roll has a fast 
rotation rate which creates a relatively large shear stress. The latter induces a 
secondary roll. At a later time, t = O(l) ,  even the slow heating rate causes the 
creation of an induced roll, as seen in figure 2. 

An interesting phenomenon occurs when the steady state of the system consists of 
an odd number of rolls. The heating process, being symmetric to reflection through 
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Time 
FIGURE 4. (a) Velocity vector plot for: R = 2500, Pr = 0.71, r = 1, € =  1 and a time of 1. Lower 
plot is the corresponding vorticity contour plot with horizontal centreline temperature 
superimposed. (b )  The process of breaking the reflection symmetry. The parameters are as in (a) ,  
The time is 6.9. (c) Plots as in (a)  for a time of 12. (a!) Maximal speed as a function of time. 

a vertical line that halves the rectangle will always create an even number of rolls. 
An example is provided in figure 4 (a) where two rolls have been created in a system 
whose Rayleigh number is 2500 and whose aspect ratio equals unity. The symmetry 
of the velocity and vorticity fields is obvious from the figure. During the development 
of the system one roll close to a sidewall will disappear and the system will stabilize 
to its final state. Indeed, in figure 4 ( b )  we see the left roll weakened and the right roll 
starting to take over. The relative sizes of the rolls are even more obvious in the 
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FIGURE 5 .  (a) Velocity vector, temperature contour and vorticity contour plots for R = 7000, 
Pr = 0.71, t = 1,  r = 3 and a time of 1.0. No asymmetric perturbation has been used. ( b )  Same plots 
as in (a) following the application of an asymmetric perturbation. 

vorticity plots. Finally in figure 4(c) we see a single roll. Since Ra < Ra, this roll will 
eventually decay. The transition from an even to an odd number of rolls is a 
symmetry breaking transition which is not possible without noise, asymmetric 
heating or other 'imperfections '. In  our simulations, this occurs because of round-off 
errors or by a controlled application of an asymmetric perturbation. Figure 4 ( d )  
exhibits the transition between the two-roll state and the single-roll state as 
displayed by the maximal velocity in the cell as a function of time. The even number 
of rolls firstly decay at a faster exponential rate, then one roll disappears and the flow 
field decays at a slower rate. The initial slope corresponds to a decay rate of the two- 
roll state and the slope a t  later times corresponds to the decay rate of a single-roll 
state (whose initial amplitude was very small). 

For Ra = 7000 and r = 3 we obtain a stable pattern consisting of two large rolls 
and two small rolls (the small rolls are the parents) both of which are in the lower (left 
and right) corners (see figure 5a).  This state is symmetric with respect to reflection 
about the vertical centreline. We have tested the stability of this state by applying 
an asymmetric perturbation (/? = 0.001 at xo = zo = 0.25, cf. (2.13)) to it. When a 
relatively large asymmetric perturbation (p = 0.1 at the same point) is applied, the 
system will evolve towards a stable, three-roll state as in figure 5 ( b ) .  This is an 
example of multistability. We have also observed multisbability a t  other Rayleigh 
numbers and aspect ratios. 
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T 

FIGURE 6. (a)  Velocity vector plot for R = 10000, Pr = 0.71 and r = 1. No asymmetric 
perturbation has been used. ( b )  The temperature contour plot corresponding to (a) .  (c) Velocity 
vector plot corresponding to the same parameters as in (a ) .  An asymmetric perturbation has been 
used. (d ) Temperature contour plot corresponding to (b) .  ( e )  Horizontally averaged temperature as 
a function of z for R = 50000, r = 1 and Pr = 0.71. 

In  all the low-Rayleigh-number, two-dimensional simulations we have not 
observed any defects. Transitions between different-roll-number states proceed by 
eliminating rolls adjacent to the side boundaries, as we have seen before. First, a 
'boundary ' roll becomes weaker (lower amplitude), then it disappears altogether, 
and the roll adjacent to it moves in. This effect might be typically two-dimensional. 

4. Intermediate Rayleigh number behaviour: lo4 < Ra < lo5 
In this section we present results of simulations performed a t  Rayleigh numbers 

ranging from 10000 to 100000. The creation of rolls occurs in a similar way as for low 
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Rayleigh numbers. The symmetric states are always metastable and long-lived in the 
absence of noise or perturbations. They are true (unstable) steady states of the 
system. In  figure 6 ( a )  we show a velocity plot for Ra = 10000, r = 1 in the absence 
of asymmetric perturbations. The state is symmetric with respect to the vertical 
centreline. Note the ‘sagging’ of the centres of the rolls. The effect of the large 
velocity pointing downward of the centreline is clearly seen in the temperature 
contour plot (figure 6 b ) .  In figure 6(c) we present the asymmetric steady state 
corresponding to the same control parameters, which was obtained using an 
asymmetric perturbation (p = 0.1, zo = zo = 0.25, C = 32, cf. (2.13)). Note the 
symmetry with respect to rotation by an angle of 7c, as explained in $2.1. Similar 
asymmetric steady states that differ only in orientation are created by different 
asymmetric perturbations. Similar symmetric and asymmetric steady states are 
obtained at higher Rayleigh numbers (up to lo5). The boundary layers in figure 6 ( d )  
demonstrate the effect of mixing by the large velocity field in the centre of the 
cell. 

At higher Rayleigh numbers (Ra 2 60000) and aspect ratio = 1 ,  we observe a 
transient ‘roll-upon-roll ’ structure. In the final, steady, convecting state this 
structure is replaced by a single roll. This feature seems to be of general nature; when 
heating the system, it absorbs energy corresponding to a higher Rayleigh number 
and exhibits textures typical of such a Rayleigh number. Later, dissipation reduces 
the energy of the flow to that corresponding to the actual Rayleigh number. We call 
this the ‘overshooting’ effect. The effect described here has also been found in the 
time dependence of the Nusselt number : it first overshoots its asymptotic value, then 
decays to it. 

At these higher Rayleigh numbers, we also start observing corner rolls. The latter 
become more prominent as the Rayleigh number increases. A t  very high Rayleigh 
numbers (see $5) the roll-upon-roll structure is found to be itself a stable flow 
solution. 

In  all the runs that we have described so far, the final state is steady; no time- 
dependent final states are observed a t  intermediate Rayleigh numbers, aspect 
ratios < 4 and Pr = 0.71. 

The next series of results are for aspect ratios greater than unity. In figure 7 (a )  we 
see the steady velocity field for Ra = 20000 and r = 2. Note the existence of two 
small corner rolls. The flow field obeys the n rotation symmetry (cf. $2.1). The 
pattern described so far changes to a two-roll system which is symmetric about the 
centreline (cf. figure 76) at Ra = 50000. The thermal boundary layer a t  the centre of 
the bottom plate (figure 7c) is due to the jet flowing downwards in between the rolls. 
This solution is stable to asymmetric perturbations. When the Rayleigh number is 
raised to 100000, we obtain a similar flow pattern except that the velocity field 
points downward at the side boundaries (see figure 7 d  ). Since the initial sidewall rolls 
have a velocity field that points upward a t  the side boundaries, it is obvious that in 
the process that leads to this final state, the parent rolls have faded and moved into 
the lower corners (see the vorticity contour plot figure 7c) .  The induced rolls grow in 
size and become the main rolls. 

The investigation of the intermediate Rayleigh numbers dynamics for r = 4 
reveals that the number of rolls in the steady state depends on the Rayleigh number 
and the symmetry of the initial conditions. In  figure 8 ( a )  we plot the early time 
development of the roll structure for Ra = 10000 and r = 4. The final, six-roll, 
steady state is shown in figure 8 ( b ) .  Notice that the two middle rolls are smaller in 
width than the other rolls. Similar patterns are found for Rayleigh numbers ranging 
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FIQURE 7. (a) A velocity vector plot for R = 20000, r = 2, Pr = 0.71 and a time of 0.5. This is a 
steady state. (b) Velocity vector plot for R = 50000, Pr = 0.71, r = 2 and a time of 0.5. Note that 
this steady state is symmetrical with respect to the vertical centreline. (c) Temperature contour 
plot corresponding to ( b ) .  ( d )  Velocity vector plot for R = 100000, Pr = 0.71 and r = 2. (e) 
Vorticity contour plot corresponding to ( d ) .  

to 40000. When Ra = 50000 the steady number of rolls reduces to four and the 
middle rolls are less wide than those at  the sidewalls (see figure 8c) .  The corresponding 
temperature plot is shown in figure 8 ( d ) .  Already a t  this Rayleigh number there are 
no significant temperature gradients outside the boundary layers, as exhibited in 
figure 8 (d ). 

5. High Rayleigh number behaviour : Ra 2 lo5 
In this section two-dimensional convection at  Rayleigh numbers higher than 10' 

is investigated. As before, we employ rigid boundary conditions at all boundaries. 
Flows at two Prandtl numbers, 0.71 and 6.8, are simulated. 

In  figure 9 we plot results for the dynamics of the Rayleigh-Bdnard system in two- 
dimensions when the Rayleigh number is 100000 ( % 20 * Ra,), the Prandtl number is 
0.71, and the aspect ratio is unity. The flow develops into a periodic state (see figure 
9 a  for a plot of the Nusselt number at the bottom plate, Nu, as a function of 
time). 
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In figure 9 ( b e )  we present velocity vector and temperature contour plots 
depicting the dynamics at two different times. A full cycle of the fluid motion consists 
of several stages. A fluid ‘jet’ (see the increased velocity of the fluid near the 
horizontal centreline in figure 9 b)  is moving towards the lower right-hand corner. It 
splits into a part co-flowing with the upper roll and a part moving towards the lower 
right-hand corner and then upwards. The direction of the jet changes and after half 
a cycle, it points towards the upper right-hand corner creating a flow field which is 
very much a mirror image of the previous flow field (see figure 9d) .  Later the jet 
returns to the state shown in figure 9 b. 

The temperature contour plots (see figure 9c, e )  and the graph of the horizontally 
averaged temperature us. z (figure 9 f )  show that the system has three boundary 
layers : two at the top and bottom plates and one in between the rolls. The centre part 
of the square cell has a very low temperature gradient due to convective mixing. 

It is interesting to speculate as to the physical reason underlying the periodic 
motion observed in figure 9. Consider a situation in which the two main rolls are of 
equal strength, one upon the other and ‘non-interacting ’. A perturbation in the 
velocity field creating a slight upward motion in the right-hand part of the centreline 
will be subsequently amplified by the buoyancy forces. The result is a ‘jet ’ carrying 
accelerating fluid towards the upper boundary. This acceleration process is 
terminated by the additional frictional forces which arise due to the acceleration of 
the upper roll as well as the flattening of the temperature gradient created by the fast 
jet. In  the process of the jet moving upwards, the upper roll cannot absorb the full 
mass and momentum imparted to it by the incoming jet. Consequently, part of the 
fluid brought up by the jet moves towards the top right-hand corner and then moves 
downwards independently of the upper roll. In the upper right-hand corner there is 
a large temperature gradient but hardly any fluid motion, a situation that favours 
the increase of convective motion. The resulting shear forces will then cause the jet 
angle to  decrease (with respect to the horizontal centreline). Inertial forces will then 
move the centre jet below the centreline where a process similar to the one just 
discussed will occur. In  this way an oscillatory motion is initiated. 

The physics observed at  Ru = 200000 to 700000, r= 1, and Pr = 0.71 is similar 
to that at Ra = 100000. 

An interesting change occurs in the dynamics when the Prandtl number is raised 
to 6.8. In figure 10 we plot results of a simulation with Ra = 100000 and Pr = 6.8. 
The dynamics here consists of the merging and separation of pairs of vortices. Figure 
10(a) and the corresponding vorticity contour plot, figure 10(b) ,  exhibit a state 
consisting of two corner vortices and a centre vortex, which had been formed by the 
merging of two vortices. Figure 10(e, f )  depicts a later stage in the cycle which 
resembles the previously shown state rotated by 90”. An intermediate situation in 
which all four vortices are separated is found in figure l O ( c ,  d ) .  This process repeats 
ad infiniturn and is periodic. In figure 1O(g) the periodic behaviour of the Nusselt 
number is shown. We have tested the dynamics by increasing the resolution and have 
obtained identical results. 

We have checked the dynamics for higher Rayleigh number, Ra = 110000-150000, 
and found that the period decreases, but the qualitative features of the dynamics 
remain the same. No frequency locking has been observed, and we believe that this 
kind of dynamics will continue to asymptotically large Rayleigh numbers, where 
further splittings and reunions of vortices are expected. 

In summary, the most prominent feature of two-dimensional convection at  high 
Rayleigh numbers (Ra 2 l O O O 0 0 )  with rigid boundary conditions at all boundaries 
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FIQURE 9(a-c). For caption see facing page. 

and Prandtl number 0.71 is the surprising absence of chaotic or even quasi-periodic 
behaviour. This fact is to be contrasted with results obtained from low-order 
truncations of the two-dimensional Boussinesq equations ; e.g. the Lorenz model 
(Lorenz 1963) or the 14-mode Curry model (Curry 1978) or from simulations in which 
slip or periodic boundary conditions were used (Curry et al. 1984). The time dependent 
flows here are characterized by a single frequency and its harmonics (at least up to 
Ra = lo6, Pr = 0.71). In spite of the absence of aperiodic behaviour, these two- 
dimensional flows have some interesting topological flow features. For example, 
when the aspect ratio is unity, a time dependent roll-upon-roll state is observed. 
Similar flow states were observed in Hele-Shaw systems (e.g. Frick & Muller 1983; 
Koster & Muller 1984). The latter are, however, of different nature than pure two- 
dimensional convection. Corner rolls are seen in most flows, and we believe that they 
may generally exist but are too weak to be detected or resolved in many cases. 

6. Chaotic solutions 
In the present section we present evidence for the existence of chaotic dynamics 

when the Prandtl number is 6.8 and the Rayleigh number is large enough. This result 
should be contrasted with the fact that no chaotic solutions have been found when 
the boundary conditions are stress free or periodic (Curry et al. 1984). In the case of 
double-diffusive convection Knobloch et al. (1986) did obtain chaotic behaviour, but 
a highly resolved simulation by A. Shi & S. A. Orszag (private communication) 
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2 

FIGURE 9. (a) Nusselt number at the bottom plate as a function of time for Ru = 100000, Pr = 
0.71 and r = 1. (6) Velocity vector plot a t  a time of 1.9. Parameters are as in (a). The ‘jet’ points 
downwards. (c) Temperature contour plot corresponding to (6). ( d )  Velocity vector plot a t  time 2. 
Parameters are as in (a). ( e )  Temperature contour plot corresponding to ( d ) .  (f) Horizontally 
averaged temperature as a function of z. Parameters are as in (a) .  

showed that this was a result of insufficient resolution. The absence of chaotic 
solutions mentioned above only applies to fully resolved simulations. When a 
truncated set of modes (Yahata 1984; Lorenz 1963; Curry 1978) or amplitude 
equations (Greenside et al. 1982) are used, one does obtain chaotic solutions. The 
latter seems to be an artifact, related to the absence of sufficient damping a t  high k 
modes (which are neglected in truncations). 

It seems to us that there are two major reasons for the above mentioned 
qualitative differences. The first is the fact that no-slip boundary conditions 
introduce couplings between modes that are uncoupled when slip or periodic 
boundary conditions are used ; existent couplings are modified in a significant 
manner. The other reason is related to the fact that vorticity can be generated at a 
no-slip boundary (Siggia & Zippelius 1981). It seems that a major factor in 
determining whether the system wili have chaotic states is the value of the Prandtl 
number (Schluter, Lortz & Busse 1965; Busse 1972; Korpela, Gozum & Baxi 1973; 
Gershuni & Zhukhovitskii 1976). 

We have learned from experience that highly restricted conditions on a system 
(e.g. no-slip boundary conditions, finite geometry, symmetry or finite resolution in 
simulation) have a tendency to delay the onset of instabilities leading to chaos as a 
control parameter is varied. On the other hand, such restrictions may bring about 
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FIGURE lO(u-f). For caption see facing page. 

chaos; without, them the system might not have a chaotic state at all. Some more 
detailed reasoning is presented below. 

As mentioned before, we have not observed any chaotic solut,ions at (relatively) 
low r simulations a t  Pr = 0.71, but we have observed solutions of aperiodic nature 
at Pr = 6.8. While complete physical understanding as to the reasons for the 
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FIGURE 10. (a )  Velocity vector field for R = 100000, Pr = 6.8, r = 1 and a time of 0.1. (b )  Vorticity 
contour field corresponding to (a ) .  (c )  Velocity vector field, with parameters as in (a )  a t  a time of 
0.3. ( d )  Vorticity contour plot corresponding to (c). ( e )  Velocity vector field at a time of 0.5. 
Parameters are as in (a) .  (f) Vorticity contour plot corresponding to ( e ) .  (9) Nusselt number as a 
function of time for the cell described. 

1 .o 

appearance of chaos a t  higher Pr is still lacking we wish to suggest some ideas based 
on our numerical results. It seems that enhanced viscosity (which corresponds to a 
larger Prandtl number) will increase the rate of vorticity production and will not 
allow large shear in the system. The latter is probably the reason why corner rolls are 
created and are of crucial importance in the dynamics of the flow. It appears that 
there is a constant competition between the corner rolls and the other rolls. 
Sometimes the corner rolls grow in size a t  the expense of the other rolls and 
sometimes the opposite will happen. This ‘pattern competition ’ (Busse & Clever 
1979; Ciliberto & Gollub 1984; Bolton, Busse & Clever 1986) is presumably 
responsible (or partly responsible) for the observed chaotic behaviour. 

In  figure 11 we demonstrate the dynamics of the two-dimensional Boussinesq 
equations for r = 2, Pr = 6.8 and Ra = 100000. Figure 11 (a-h) exhibits velocity 
vector and vorticity contour plots for this system, from a time of 1.57 to 3.32. These 
plots represent the ‘fully developed dynamics’. By this time the transient states 
seem to have decayed. The latter was tested by doubling the number of collocation 
points in each direction (322 to 642). 

The higher resolved dynamics, which is not reproduced here, is almost identical to 
that obtained using the lower resolution. Due to  limitations in computer resources, 
the latter runs were made for a shorter time than the former, yielding, as mentioned 
above, equivalent results, e.g. spectra. Unless the chaos decays after a very long 
time, a possibility in every numerically or experimentally obtained chaotic state, we 
believe we have obtained true chaotic dynamics. 

As seen in figure 11, the number of rolls in the box is changing from 3 major rolls 
(figure l l b )  to  6 (figure l l h ) .  A close inspection of the corresponding vorticity 
contour plots reveals the existence of additional, smaller rolls near the corners. The 
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rolls may grow in size and merge with larger rolls as is seen at a time of 2.07 (figure 
11 c ) .  Note the existence of large vorticity gradients a t  the boundaries and in between 
the rolls. The time difference between consecutive plots is too large to follow the 
continuous dynamics of the system ; they are merely samples of the possible states 
of the system. I n  each plot there are one or two 'jets';  we recall in $5  that such jets 
were of importance in the periodic dynamics. 

I n  many of the flow states we have observed 'quasi-triangular' rolls, which 
normally have two extrema in their vorticity (see e.g. figure llf). They are composed 
of pairs of co-rotating vortices which match by having the velocity a t  their 
'interface' vanish (see $ 5 ) .  
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FIGURE 11. Velocity vector and corresponding vorticity contour plots for r = 2, Pr = 6.8 and 
Ru = 1OOOOO at the following times: (a )  1.57; (b) 1.82; (c) 2.07; ( d )  2.32; ( e )  2.57; (f) 2.82; (9) 3.07; 
(h) 3.32. 

In  figure 12(a) we present a plot of the Nusselt number a t  the bottom plate as a 
function of time. It seems to  be aperiodic. The corresponding correlation function for 
the Nusselt number is presented in figure lZ(6) .  The non-decaying nature of this 
correlation is attributed to the fact that the chaotic part of the correlation is 
superimposed on a quasi-periodic part. Figure 12 ( c ) ,  a plot of the power spectrum of 
Nusselt number, shows the existence of a fundamental mode with a frequency of 
about 155 and its harmonic (denoted by arrows). The power spectrum is broad and 
similar to other power spectra corresponding to  chaotic series. Figure 12 ( d )  presents 
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FIGURE 12. (a) Nusselt number a t  the bottom plate as a function of time. ( b )  Correlation function 
corresponding to (a). ( c )  Power spectrum of the Nusselt number corresponding to the time series 
in (a) .  ( d )  Phase space plot of corresponding to the Nusselt number a t  the bottom plate. Plotted 
is N u ( ~ + T )  218. Nu(t) for 7 = 0.01. (e) Poinear6 section corresponding to the Nusselt number at the 
bottom plate. The plotted points are N u ( t + ~ )  us. Nu( t+27)  when Nu(t )  = 2.8. (f) Spatial energy 
spectrum as a function of wavenumber at a time of 0.36. 
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a phase space plot corresponding to the Nusselt number at the bottom plate. The 
discreteness of the points in the phase space plot is due to the fact that our numerical 
procedure is performed in discretized time. The delay time used in these plots is 0.01, 
which is about half the typical oscillation period of the system. Other delay times 
yielded similar results. The phase space plot was computed from a single signal using 
an embedding method which is frequently employed in the literature (Takens 
1981a, 6 ;  Grassberger & Procaccia 1983). Figure 12(e) presents a Poincare’ section 
(Guckenheimer & Holmes 1983) corresponding to the Nusselt number at the bottom 
plate. In spite of the poor statistics (which is due to  the very large computational 
time necessary to generate a point in the Poinear6 section) it is evident that the 
system is not quasi-periodic. The correlation dimension (Grassberger & Procaccia 
1983; Malraison et al. 1983) of the above described state is approximately 2.2. 

We have tested the accuracy of our solution by computing the energy spectrum as 
a function of k (see figure 12 f ). Indeed, as this plot shows, the energy contained in 
the resolved modes decays by about 8 orders of magnitude from the lowest to highest 
k-mode. We have no explanation of the small hump observed a t  high k. However, due 
to its very small magnitude, we do not believe it to be dynamically important. The 
rate of dissipation in the same range of k-vectors has been found to decay by over 3 
orders of magnitude. The true number of modes participating in the dynamics is thus 
very low (in three dimensions, cf. Gollub & McCarriar 1982; Gollub, McCarriar & 
Steinman 1982). 

7. Conclusions 
The effect of boundary conditions on the nature of the flow and temperature fields 

of the Rayleigh-BBnard system in two space dimensions has been demonstrated. It 
has been shown that, on one hand, the imposition of no-slip boundary conditions a t  
all boundaries suppresses flows whose time dependence is more complex than 
periodic for Pr = 0.71, unlike the case of less realistic periodic or frec-slip boundary 
conditions. On the other hand, the same rigid boundary conditions give rise to 
chaotic flows when the Prandtl number is 6.8, whereas no such effect has been 
observed for periodic or free-slip boundary conditions. We thus see that for relatively 
low Prandtl numbers, no-slip boundary conditions have a strong controlling effect on 
the complexity of the flow. For higher Prandtl number i t  seems that additional 
couplings between various modes as well as vorticity creation a t  the boundaries, both 
of which result from the no-slip condition, are responsible for the creation of chaotic 
states. 

The process of initiation of the convective flows has been investigated. We have 
shown how boundary heating, which is necessary to achieve a given Rayleigh 
number leads to the creation of rolls near the side boundaries. The latter may then 
move into the interior of the cell and/or induce additional adjacent rolls, depending 
on the parameters characterizing the preparation of the system. This effect is 
observed even well below the critical Rayleigh number. 

Symmetries and symmetry breaking are important for the flow pattern selection 
in the system. Since our ‘process’ of heating shares some of the symmetries of the 
(Boussinesq) equations of motion we have obtained metastable symmetric flow 
states. Some of these states are stable to small perturbations but would develop into 
asymmetric states when perturbed by a strong perturbation. Others are relatively 
unstable and our numerical roundoff errors are sufficient to  drive them towards their 
respective stable, asymmetric, final states. Some final states are truly symmetric. 
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We have seen that even time periodic states can possess complex flow patterns. 
Some of these periodic states would involve merging and separation of vortices. 
Others would involve a slight ‘jitter ’ of nearby rolls. An interesting state has been 
observed for an aspect ratio of unity and a Prandtl number of 0.71 : a roll-upon-roll 
state. The rolls observed in most of our simulations are relatively distorted, the 
distortion growing with the Rayleigh number. Some rolls would stay almost 
permanently near the corners and we termed these corner rolls. The latter seem to 
‘fill gaps’ which are not accessible to the ‘main’ relatively large rolls. The chaotic 
state (for r = 2) involves, most of the time, five highly distorted rolls. Thus the 
topology and morphology of the flow pattern a t  the relatively low aspect ratios we 
have studied possess much more structure than one would expect on the basis of 
amplitude equations or results pertaining to high-aspect-ratio systems. 

The number of modes ‘participating ’ in all of these interesting dynamical effects 
is very low and comprises a t  most one decade in wave-vector space. Consequently, 
the hydrodynamic system we have considered may correspond to a rather simple 
dynamical system. This correspondence as well as the properties of the chaotic state 
will be described in detail in future work. 
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